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We consider a horizontal three-dimensional saturated porous layer, confined in an 
upright cubic box, heated from below and cooled from above. In the absence of a 
controller, the fluid maintains a no-mo tion state for subcritical Rayleigh numbers 
R < R,, where R, depends on the box’s aspect ratio. Once this critical number is 
exceeded, fluid motion ensues. We demonstrate that, with the use of feedback control 
strategies which suppress flow instabilities, one can maintain a stable no-motion state 
for Rayleigh numbers far exceeding the classical critical one for the onset of 
convection. To preserve the equilibrium no-motion state of the classical problem, the 
controller alters the system’s dynamics so as to stabilize an otherwise non-stable state. 

1. Introduction 
In many material processing applications, it may be desirable to operate at Rayleigh 

numbers higher than the one at which convection normally occurs and yet have no 
convection. Current alternatives for suppressing convection include the use of 
magnetic fields to damp fluid motion (an option limited to electrically conducting 
materials) and processing materials at reduced gravity in space to minimize the effect 
of buoyant convective currents. A considerable amount of work also has been devoted 
to delaying the onset of Rayleigh-Benard convection in a horizontal fluid layer heated 
from below and cooled from above through the modulation of the boundary data. 
Most of these attempts have included the use of time-periodic modulation of the 
temperature difference across the layer (for lucid reviews, see Davis 1976 and Donnelly 
1990). Unfortunately, this technique provides only a slight increase in the critical 
Rayleigh number (Meyer, Cannell & Ahlers 1992). Moreover, periodic modulation 
may lead to a subcritical bifurcation (Roppo, Davis & Rosenblat 1984), thereby 
causing the no-motion state to have only a limited basin of attraction. In other words, 
the no-motion state may be stable only for small disturbances. Recently, Kelly (1992) 
proposed delaying the onset of thermal convection by causing the fluid in the layer to 
oscillate slowly about a zero mean with two out-of-phase horizontal velocity 
components. Kelly predicts that the procedure may lead to substantial stabilization. 
However, his procedure may be difficult to implement in practice and the necessary 
horizontal motions may have adverse effects in materials processing applications. 

In prior experimental and theoretical investigations (Singer, Wang & Bau 1991 ; 
Singer & Bau 1991 ; and Wang, Singer & Bau 1992), we used a feedback controller to 
successfully alter the bifurcation structure of convective motions in a thermal 
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convection loop heated from below and cooled from above. For example, with the aid 
of a controller, we were able to delay the transition from a no-motion to a motion state, 
laminarize the naturally occurring chaotic motion in the loop for Rayleigh numbers far 
exceeding the one at the onset of chaos in the uncontrolled system, stabilize otherwise 
non-stable periodic orbits embedded in the chaotic attractor, and induce chaos under 
conditions in which the flow normally would be laminar. 

Encouraged by our success with this work, we decided to implement similar ideas 
with a more complex thermal convective system, that of a horizontal saturated porous 
layer confined in a box, heated from below and cooled from above (the classic 
Lapwood 1948 problem). We chose the problem of Lapwood convection for study 
because of its relevance, among other things, to transport processes in the mushy 
region of solidification processes and in thermal porous insulators. In the latter case, 
one can envision ‘active’ insulators in which a controller is used to suppress convective 
currents, thereby reducing heat transfer. Still another reason for our choice of the 
Lapwood problem is that the saturated porous medium is a convenient medium for 
experimental verification of the concepts described in this paper. This is because the 
onset of convection in the porous case occurs at much higher temperature differences 
than it does in the Newtonian fluid case. Consequently, experiments in porous media 
can be conducted in a cruder and less expensive apparatus than would be required in 
the Newtonian fluid case. 

We model the convection in porous media using the Darcy-Oberbeck-Boussinesq 
(DOB) equations. Prior experimental work (i.e. Katto & Masuoka 1967; and Bau & 
Torrance 1982) indicates that for low and moderate Darcy-Rayleigh numbers (R), the 
DOB equations adequately describe the convective processes in a saturated porous 
medium. 

For low R-values, the classical DOB equations of motion admit a conduction (no- 
motion) solution which is globally stable for R < R,, where R, depends on the aspect 
ratio of the box (Beck 1972). Once this critical Rayleigh number is exceeded, steady 
motion ensues. By using feedback control strategies, we can maintain the no-motion 
state for Rayleigh numbers far exceeding the critical one. The controller does not alter 
the equilibrium, no-motion solution of the classical DOB equations. It only changes 
the system’s stability characteristics by altering the system’s dynamics. 

2. A brief review of the classical Lapwood problem 
Consider a horizontal homogeneous saturated porous layer confined in an upright 

box (figure 1). The box is uniformly heated from below and cooled from above. The 
side walls are insulated. We use, respectively, the height of the box H ,  the thermal 
diffusion time H 2 / a  (where a is the equivalent thermal diffusivity of the porous 
medium), and the nominal temperature difference between the bottom and top AT* as 
the length, time and temperature scales. In the uncontrolled system, the non- 
dimensional bottom and top temperatures T are assigned the values one and zero, 
respectively. The non-dimensional, horizontal dimensions of the box are L, and L,. The 
motion of the fluid is described by the DOB equations (see Joseph 1976): 

as _ -  - F(%; R), 
at 

where Z(x ,y ,  z ,  t)T = {u, O}; uT = {uzl uy, u,} is the divergent-free ( V - u  = 0), non- 
dimensional velocity vector which satisfies zero normal velocity on all solid surfaces ; 
x and y are horizontal Cartesian coordinates; and z is the vertical coordinate. The top 
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FIGURE 1. Schematic description of the saturated porous medium confined in a box 
of horizontal dimensions L, and L,. 

and bottom boundaries are located at z = kf. In the absence of motion, the 
temperature distribution is t -  z .  8(x, y ,  z ,  t )  = T(x, y ,  z ,  t )  - (i- z) is the deviation of the 
non-dimensional temperature from the linear (conduction) profile ; R = ghpHAT*/va 
is the Darcy-Rayleigh number; g is the gravitational acceleration; h is the medium’s 
permeability; p and v are, respectively, the thermal expansion coefficient and the 
kinetic viscosity of the saturating fluid; and I; is the nonlinear operator: 

with the boundary conditions : 

) (3) 
8(x, y ,  f ;, t )  = 0, 

a m  y ,  2 7  t )  - - a w , ,  Y ,  z, 0 - - a@, o,z,  2) - - a@, L,, z,t> = 0. 
ax ax aY aY 

In the above,p is the pressure deviation from its hydrostatic value; B = (h/g5H2)(a/v) 
(usually, B < 1); q5 is the porosity; and x = (p, c,),,/(po cJf is the ratio between the 
equivalent thermal capacity of the medium and that of the saturating fluid. 

The equations for the linear stability of the no-motion state (see Beck 1972), 

are obtained by assuming the disturbance quantities {u, 19} are small and by neglecting 
second-order terms in (2). In (4), 

The boundary conditions for 8 are given in (3) and u:(x, y, -;, t) = uL(x, y , f ,  t )  = 0. 
Next, the dependent variables are decomposed into normal modes, 

4r m 

4 = X f n ,  m(x, Y )  K, m ( z )  eVt, 6 = C f n ,  m(x, V )  @n, m(z> cut, (5)  

(6)  

n ,  m=l n, m=l  

where fn, m(x, y )  are orthonormal functions satisfying the equation 

Y f n , m  +4, m f n , m  = 0 
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Equations (6 )  and (7) suggest that 

where 

and m and n are integers (one of which, but not both, may be zero). For example, 
(n, m) = (1,O) or (0,l) corresponds to a single, two-dimensional roll and (n, m) = (1,l) 
corresponds to a three-dimensional, single cell. Upon substituting u: and 6’ into ( 5 ) ,  we 
obtain 

(aB+1)(D2-~;,,) K,m = - K : , ~  R h , , , ,  ( D 2 - ~ ~ , m - ~ ~ ) O n , m  = -&K,m, 
(8) 

(9) 

where D = d/dz. This set of differential equations can be reduced to the single equation 

(D2 - 4, m)  (D2 - K i ,  m -XV) @a, m = 4, m Ron,  m ,  

with the isothermal and impermeable boundary conditions 

On,,(:) = = D2@n,m(i) = D2@n,m(-i) = 0. 
Since, for most porous materials, B 6 1, we assumed above that B = 0. For a given R- 
value, (9)-(10) constitute an eigenvalue problem for the growth rate v = vR + irT. We 
order r in a descending sequence according to the magnitude of the eigenvalues’ real 
parts with the eigenvalue with the largest real part denoted as crl. The sign of the real 
part of v1 determines the stability characteristics of the no-motion state. For r?, < 0, 
the no-motion state is linearly stable. The marginal stability condition is obtained by 
determining the Rayleigh number which corresponds to growth rate crR,l = 0. Since 
(9)-(10) are self-adjoint, all values of cr are real and the marginal stability condition can 
be determined by setting cr = 0 in (9), which now becomes an eigenvalue problem for 
R. Equations (9)-( 10) admit the even, cos [(21+ 1) nz] ,  and odd, sin (21nz), eigen- 
functions, where 1 is an integer. These eigenfunctions are proportional to the 
deviation of the vertical temperature profile from its conductive value at the onset of 
convection. The odd modes have a node (assume zero value) at the box’s midheight 
( z  = 0). The even and odd modes lose stability at different Rayleigh numbers. For 
example, for the cases of an infinite fluid layer, a cubic box (L, = L, = l), and a 
square, the Rayleigh numbers for the onset of even and odd convective modes are, 
respectively, 4n2 and 16n2. Thus, in all the aforementioned cases, one would observe 
even modes at the onset of convection. The no-motion state’s loss of stability occurs 
through a supercritical bifurcation into time-independent, cellular motion. For R < R,, 
the no-motion solution, 8 = 0, is globally stable (Joseph 1976). 

3. Stabilization of the no-motion state 
Our objective is to maintain the no-motion state for R > R, with the aid of a 

feedback controller consisting of sensors and actuators. The sensors will measure the 
temperature at a number of points inside the fluid and the actuators will react to any 
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deviation of the fluid’s temperature from the desired conductive values by modifying 
the temperature at certain locations along the bottom of the box in such a way as to 
dissipate these deviations. Advances in microfabrication technology make it feasible, 
if necessary, to equip the box’s bottom with a relatively large number of actuators at 
a reasonable cost. Thermal sensors and actuators appear to be the most convenient 
type of sensors and actuators to use for this particular application; but they are not the 
only type possible. 

To aid in understanding the action of the controller, we briefly state the mechanisms 
responsible for the loss of stability of the no-motion state in the classical problem. The 
no-motion state is an equilibrium state for all Rayleigh numbers. As a result of random 
disturbances, the temperature in the fluid may deviate from its conductive value. Such 
a deviation will provide a buoyant force which, in turn, will induce fluid motion. For 
subcritical Rayleigh numbers, the induced motion is sufficiently slow to allow ample 
time for thermal conduction to dissipate any disturbances, remove the resulting 
buoyant forces, and restore the no-motion state. Our controller will act to assist these 
dissipative mechanisms. 

More specifically, the sensors will detect any deviations in the temperature of the 
fluid from its conductive value and direct the actuators to reduce/increase slightly the 
bottom temperature beneath an ascending/descending fluid column. Through this 
action, the buoyant force will be reduced, thereby increasing the time available for the 
conduction to dissipate disturbances before they have the opportunity to manifest 
themselves. Once the disturbances have been dissipated, the bottom temperature is 
restored to its nominal, uniform, non-dimensional value of one. As we shall 
demonstrate later in the paper, by assisting the dissipative mechanisms, the controller 
allows a significant increase in the critical Rayleigh number for the onset of convection 
at the cost, typically, of only small modifications in the bottom temperature and 
thereby stabilize the no-motion state for some supercritical Rayleigh numbers. 

Next, we present our feedback control strategy in mathematical form. Briefly, we 
propose to augment the dynamic system (1) with the controller C( .) : 

- _  - G(3; R) = F(6; R) + C(6; R, K), 
at  

where C(0; R, K) = 0 for all R- and K-values; and K is the controller’s gain vector. 
Here, s“ is the deviation of the measured variables from their desired value (E  = 0 in 
our case); and C may be either a linear or a nonlinear operator. Linear C ( . )  may 
represent proportional (P), integral (I), or differential (D) control or some combination 
thereof (i.e. PUD). Note that the no-motion solution (3 = 0) is an equilibrium state of 
both the uncontrolled and the controlled systems. In other words, the controller does 
not alter the state we wish to stabilize; it only changes its stability characteristics. 

Let us begin by assuming that the temperature distribution at some horizontal cross- 
section, i.e. 8, = 8(x,y,O, t )  at z = 0, is known (or can be reconstructed) as a 
continuous function of the horizontal coordinates (x, y).  Knowledge of the temperature 
profile is assumed for mathematical convenience and it may not be necessary for the 
practical application of the controller. Indeed, numerical experiments suggest that 
knowledge of the temperature at a few discrete points will suffice for successful 
application of the controller. 

In the absence of motion, B(x, y ,  z,  t )  = 0 everywhere. When disturbances in the 
temperature field occur, fluid motion ensues and 8, deviates from its zero, conductive 
value. To suppress this fluid motion, the controller modifies momentarily the base’s 
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temperature distribution in proportion to the measured deviation and its time 
derivative, i.e. 

where Kp and KD represent, respectively, the gains of proportional and differential 
controllers. Note that the controller reduces/increases slightly the base temperature at 
locations where the fluid tends to ascend/descend. Once the disturbance has 
disappeared, O(x, y ,  -:) will be restored to its nominal, zero value which is the same as 
in the uncontrolled case. Since, under normal operating conditions, the controller 
reacts to disturbances before they have an opportunity to grow, the alterations in the 
bottom’s temperature will typically be small. We shall demonstrate in the next sections 
that this simple strategy can shift significantly the bifurcation point for the transition 
from the no-motion to the motion state. 

4. Linear stability analysis 
The linear stability analysis proceeds along the same lines as the classical analysis 

described in $2 with the exception that boundary condition (12) replaces the boundary 
condition 6(x,y,  -$, t )  = 0 of the uncontrolled problem. The eigenvalue problem 
consists of (9) with the boundary conditions 

en, ,(:I = D2@,, A+) = On, ,(-3 + (KP + VKD)  %, ,(O) 
= (D2-~K2,,,-x~)@n,,(-$) = 0. (13) 

In the controlled case of K p  > 0 and/or KD > 0, the analysis is a bit more 
complicated than in the classical problem because the application of the controller (13) 
breaks the symmetry in the boundary conditions. The system (9) and (13) is no longer 
self-adjoint, and the eigenvalues ((r), which correspond to the growth rate, are not 
guaranteed to be real. Consequently, the possibility of bifurcation from a no-motion 
state into time-dependent convection cannot be excluded. To obtain the conditions of 
marginal stability, we need to seek values of both R and ( rI ,  with (rR, = 0 such that 
(9) and (13) are non-trivially satisfied. 

We start the analysis by investigating the dependence of the critical Rayleigh number 
on the proportional controller’s gain (K,) for K p  < 1 and KD = 0. The smallness of K p  
allows us to proceed with a perturbation analysis. 

4.1. Perturbation expansion (Kp  < 1 ,  KD = 0)  
Consider R, (rl, and 0 to be functions of K p .  Below, for conciseness, we drop all 
subscripts except those which denote the order of the approximation. We expand (r, R, 
and 0 into the corresponding Taylor series in terms of Kp about Kp = 0, i.e. 

(r= a o + ~ , K p + a , K ~ +  ..., R =  R,+KpR1+K;R2+ ..., 
0 = 0 , + 0 , K p + 0 , K ~ +  .... 

The resulting problem for O(K;) is identical to the classical Darcy-Rayleigh-BCnard 
problem, where the operator in (9) is self-adjoint. This implies a, = 0; 
R, = ( x ~ + K ~ ) ’ / K ~  and 0, = cos(xz), where K is the value which yields a minimum 
for R,. 
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At higher orders of Kp, i.e. O(Kb) with I > 0, we obtain a set of linear non- 
homogeneous equations of the form 

1 

1-1 
[(D' - K ~ ) '  - R, K2] 0, = C (x(D2 - K ~ )  vj  + K ~ R ~ )  OZ+ (14) 

with the boundary conditions: 
1 

el(:) = 8,( -0 + @,-,(O) = (D2 - K') @,( - i) - C XCT~ el+( - i) = D2@&) = 0. (1 5)  
5-1 

Since the null space of the linear operator in (14) is not empty, for solutions to exist 
the solvability condition (Fredholm's alternative), 

must be satisfied and we require that at marginal stability C T ~ , ~  = 0. 
Equation (16) suggests that R, = ~ ' I E R , / ( ~ ~ + K ~ )  and aT, = 0 for all j .  That is, at 

criticality, R = R, + Kp R, + O(Ki). The controller has the effect of increasing the value 
of the Rayleigh number at the onset of convection. For small values of Kp, the growth 
rates are real and the principle of exchange of stability holds. That is, the branch of 
cr(Kp,R) which satisfies cr(O,R,) = 0 is real. This, however, does not preclude the 
possibility that, as Kp increases, other branches of cry possibly consisting of complex 
values, may dictate stability. As we shall see later (i.e. figures 6 and 7), this is, indeed, 
the case for Kp > 3.85. 

Note that as long as the loss of stability occurs through a real eigenvalue (v = 0 at 
the marginal stability), the differential controller (KD) cannot shift the marginal 
stability curve to higher R-values. It may, however, have an impact on the system's 
dynamics. 

4.2. Stability analysis for any controller's gains 
For any values of Kp and K,, we solve (9) and (13) directly. Equation (9) is satisfied 
by 

where x, = (K' + i(xa + 7));, x, = (- K' + f( - ~a + 7)3, 
By satisfying the boundary conditions (13), we obtain a set of four homogeneous linear 
algebraic equations for the coefficients Ai. For these equations to be non-trivially 
satisfied, it is necessary that the matrix 

O(z) = A,  cosh (x, z )  + A ,  cos (x, z) + A ,  sinh (x, z )  + A ,  sin (x, z), (17) 
7 = ($a2 + 4 ~ ~ R ) i .  

(E:) 
be singular. In the above, 

0 sin (ix,) 
C = (  sinh(:x,) 0 cosh(ix,) 0 

0 is a 2 x 2 matrix with all its entries being zero, 

1 K+ 2 cosh (ix,) K+ 2 cos (ix,) E = (  
(7 -;XCT) cash (i~,) - (7 + ~ X V )  cos (:x,) ' 

and K = Kp+ aK,. For the matrix (18) to be singular, we need either Det [D] = 0 or 
Det [€J = 0. 
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Just as in the case of the classical problem, Det[D] = 0 corresponds to loss of 
stability through odd modes (the corresponding eigenfunction is sin [x, z]).  For a cube, 
this loss of stability occurs at R = 16n2. Our chosen control strategy has no effect on 
the odd modes. This is because our sensors are located at midheight, where the odd 
modes have a node. In order to stabilize the odd modes, we would need to place sensors 
at other heights where the odd modes do not have nodes, a set-up which we do not 
address in this paper. The control strategy discussed in this paper will be able to shift 
the bifurcation point only up to the Rayleigh number at which the odd modes are 
destabilized. In other words, in the case of a cubic box, the most we can hope for from 
our controller is to shift the loss of stability from R = 4n2 to R = 167~’. However, our 
chosen control strategy does have the advantage that the determinant (18) can still be 
factored, which, of course, simplifies the analysis. 

The controller clearly affects the stability characteristics of the classical ‘even 
modes’. Because the controller breaks the symmetry of the problem, in the presence of 
the controller, these modes are no longer even. The ‘non-odd’ eigenfunctions have the 
form 

sinh (x,(z -i)) - sin (x,(z -;)) 
sinQx,) . O(z) = 

The critical Rayleigh number for the onset of convection through eigenfunction (19) 
is obtained by solving the characteristic equation Det [€J = 0 or explicitly, 

M(R, a) = MR+iMI = K ( 7 + ~ ~ a ) c o s ( ~ ~ ~ ) + K ( 7 - ~ p ) c o s h ( ~ x , )  
+ 47 cosh (ix,) cos (ix,) = 0 (20) 

for R and aI with aR = 0. 
One way to calculate solutions for (20) is to separate the equation into its imaginary 

and real parts and solve the simultaneous system M,(R, a,) = MI(& aI) = 0 for R and 
aI. We used both Mathematicds (Wolfram 1991) root solver and the bifurcation 
software AUTO to calculate R and aI as functions of Kp, K,, and the wavenumber K.  

These methods trace efficiently a solution branch which corresponds to the classical 
stability limit at K = 0. These methods may not locate isolated solution branches, 
however. 

In order to verify that for a given set (R,  Kp ,  K,, K )  no values of a exist with a positive 
real part, we use the Nyquist criterion (Carrier, Krook & Pearson 1966). Briefly, the 
criterion states that the number of roots of (20) within a given closed curve (Z) in the 
complex a-plane is equal to the number of times M(R,a) encircles the origin of the 
complex M-plane as a traverses C. M(R, a) must be analytic within and non-zero on 
Z. We construct the curve C to consist (see insert in figure 2) of the imaginary axis and 
a half-circle whose radius can be enlarged to include the entire right-hand side of the 
complex a-plane. Then we map the curve C from the complex a-plane to the complex 
M-plane. 

The function M(R, a), as given by (20), is not convenient to work with because the 
mapping of the large half-circle results in infinite numbers of partial encirclings of the 
origin in the M-plane. To overcome this difficulty, instead of investigating the locus of 
the roots of M(R, a), we work with the modified function 

G(R, a) = G,  + iG, = 7-lM(R, a) exp { -i[x(a + l)]i}, (21) 

which maps the half-circle at infinity to the point 2 cosh QK) on the positive (GR) axis. 
In (21), we removed through division the non-consequential imaginary zeros of the 
function M(R, a). Otherwise, the zeros of G(R, a) are identical to those of M(R, a). 
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u - Plane 

-3 

u - Plane 

-3 

FIGURE 2. Nyquist diagram for R = 50 (stable case; the map in the G-plane does not encircle the 
origin) and R = 60 (non-stable case; the map in the G-plane encircles the origin once). K,  = 1, K,, = 0 
and (PI, m) = (1,O). The insert shows the contour Z in the complex a-plane. 

All the calculations presented in this paper are for L, = L, = 1 and x = 0.5. 
Representative samples of the upper half of the Nyquist plots for stable and non-stable 
cases and for KD = 0 and (n,  rn) = (1,O) are depicted, respectively, in figure 2 (Kp  = 1, 
R = 50 and R = 60) and figure 3 ( K p  = 4, R = 133). The curves are to be completed by 
their mirror images with respect to the real axis (GR), Observe that the curve 
corresponding to R = 50 (figure 2) does not encircle the origin while the curve 
corresponding to R = 60 encircles the origin once, which implies the existence of a 
single root with a positive real part for G(R, a) = 0. The no-motion state is stable at 
R = 50 and unstable at R = 60. Since complex roots will always come in pairs (as 
complex conjugates), this root must be real. Thus, the condition for a bifurcation 
through a single eigenvalue is that G(R, 0) must cross from the positive to the negative 
part of the real axis. The marginal stability condition corresponds to G(R, 0) = 0. This 
criterion is true only for K p  .c 3.85. For larger values of K p ,  bifurcation occurs through 
a complex-conjugate pair. 

In figure 3, we show the Nyquist diagram for K p  = 4 and R = 133. In this case, there 
is a complex-conjugate pair with a positive real part. Accordingly, the Nyquist map 
encircles the origin twice. The loss of stability is strict (do,/dR > 0). Numerical 
experiments, which we describe later, suggest that this bifurcation is supercritical and 
leads to a stable limit cycle. 

The marginal stability limits as a function of the controller’s gains are reported in $6. 
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R = 133 
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35 

FIGURE 3. Nyquist diagram for K,  = 4, KD = 0, (n,m) = (1,O) and R = 133. The map in the G-plane 
encircles the origin twice, suggesting the existence of two eigenvalues with a positive real part. The 
insert shows the contour Z in the complex cr-plane. 

5 .  Numerical simulation 
Next, we simulate numerically the nonlinear equations of the controlled system. The 

numerical simulations allow us to confirm the results of the linear stability analysis in 
the presence of finite-amplitude disturbances. 

We restrict our numerical investigation to a two-dimensional case and use the stream 
function and temperature as dependent variables. The partial differential equations are 
approximated using central differences in space and forward differences in time. We 
can afford to use central differences throughout (convective terms included) without 
being affected by numerical instabilities since we have restricted our investigation to 
weak convective currents. The equations are solved as an initial value problem. 

To verify the numerical code, we simulate the classical, uncontrolled problem. The 
onset of convection is detected by carrying out a number of simulations with gradually 
increasing Rayleigh number. The largest R for which the no-motion state was stable 
and the smallest R for which the motion state was stable are denoted, respectively, by 
circles and squares in figure 4 and depicted as functions of the number of grid points. 
For a uniform mesh of 21 x 21 which we used in most of our simulations, the critical 
R at the onset of motion R - 42f0.5 (or r - 1.06f0.01, where r = R/47c2). That is, 
the numerical simulation predicts a stability limit of about 6% above the linear 
stability theory's value. It appears that the numerical scheme introduces a slight, 
artificial dissipation which tends to stabilize the no-motion state. As we refine the mesh 
size, we are able to reduce the discrepancy between the numerically and theoretically 
(47~~) determined critical value of the Rayleigh number. The supercritical-motion 
solution, as expected, consists of a single convective cell and is in quantitative 
agreement with predictions of weakly nonlinear theory. 
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n -2 

FIGURE 4. The numerical estimate for the critical Rayleigh number at the onset of convection in the 
classical, uncontrolled Lapwood problem is depicted as a function of the mesh size. The circles and 
squares correspond, respectively, to stable and unstable no-motion states. 

6. Results 
For conciseness, we present results only for x = 0.5, a two-dimensional square 

(L, = l), and a cube (L, = LV = 1). Accordingly, ( K / x ) ~  = n2 + rn2, where rn and n are 
integers, and in the case of the square, m = 0 always. For the cube, the roles of m and 
n can always be interchanged owing to symmetry. Thus, whenever we say (m,n), we 
imply either (m,n) or (n,m). 

6.1. Marginal stability 
Figures 5-7 depict the results of the linear stability analysis. The ordinate in these 
figures is the relative Rayleigh number r = R/4n2 at marginal stability. Figure 5 depicts 
r as a function of the wavenumber ( K / x ) ~ .  Figures 6 and 7 depict, the minimal value 
of r from figure 5 ,  rc = MinK(r), as a function of the proportional controller's gain, Kp,  
for a square and a cubic cavity, respectively. 

In figure 5 ,  the dashed-dot and dashed lines respectively correspond to loss of 
stability via even and odd modes in the classical (uncontrolled) problem. The various 
solid lines correspond to controller's gains (Kp,  KD) = (2,0), (4,0), (4.2,0.02) and 
(4.2,0.06). The odd modes (dashed line) are not affected by the action of the controller. 
In the absence of a controller (K,,K,) = (O,O), convection sets up at rc = 1 and the 
supercritical time-dependent, convective motion is two-dimensional and unicellular. 
That is, at the onset of convection, ( ~ / n ) ~  = 1 corresponds to either the (n,m) = (1,O) 
or the (n, m) = (0,l) mode. 

For (Kp ,  KD) = (2,0), the growth rate of the disturbance is real and the supercritical 
motion is time-independent. In the case of the cube, rc - 1.76 occurs at (~/n)' = 2, 
which corresponds to (n, rn) = (1,l) unicellular three-dimensional supercritical motion. 
In the case of the square, ( ~ / n ) ~  = 2 is not admissible and rc - 1.89 occurs at 
( K / ' ~ c ) ~  = 1, which corresponds to n = 1 unicellular supercritical motion. Note that in 
both cases the controller successfully shifts the bifurcation point upwards from a no- 
motion to a motion state. 

For (Kp,  KO) = (4,0), loss of stability occurs through an imaginary eigenvalue (Hopf 
bifurcation). The supercritical motion is time-periodic. In the case of the cube, rc - 3.1 1 
occurs at ( K / ' ~ c ) ~  = 2, which corresponds to (n, m) = (1,l) unicellular three-dimensional, 
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FIGURE 5. The critical normalized Rayleigh number (r = R/4ne) at the onset of convection is depicted 
as a function of the wavenumber ( ~ / n ) ~  = n2+m2 for various values of the controller’s gains. The 
symbols correspond to the admissible modes for the cube. The onset of convection occurs at 
rc = Min,, m(r). 

1 -  ‘ -  

supercritical motion. In the case of the square, rc - 3.27 occurs at ( K / ~ c ) ’  = 4, which 
corresponds to n = 2 bicellular supercritical motion. 

Unfortunately, any further increase in K p  does not yield an increase in re. The effects 
of K, on rc are summarized in figures 6 and 7. For K p  < 3.85, rc increases 
monotonically with increasing Kp and the principle of exchange of stability is valid. 
For K p  > 3.85, loss of stability occurs through an imaginary eigenvalue (Hopf 
bifurcation). Further increases in K p  beyond 3.85 result in a reduction in re's 
magnitude as illustrated by the dash-dot line (KD = 0) in figure 6. 

In order to further increase the stability margin, we introduce the differential 
controller (KD > 0). The effect of the differential controller on the marginal stability 
limit as a function of the wavenumber is illustrated in figure 5 for (Kp,  KD) = (4.2,0.02) 
and (4.2,0.06). Although at r = 4 the odd modes, on which the controller has no effect, 
are destabilized and the results presented for r > 4 have no practical value, the figure 
illustrates that the differential controller successfully increases the marginal stability of 
the non-odd modes. 

Figure 6 depicts marginal stability results for the square cavity. The critical r-value 
is depicted as a function of K p  with KD as a parameter. The figure was generated to 
facilitate comparison of the linear stability analysis (curves) and the numerical results 
(symbols). The solid and dashed curves represent, respectively, loss of stability through 
a real cr (exchange of stability) into unicellular (n = 1’0 < K p  < 2.6) and bicellular 
(n = 2,2.6 < Kp < 3.85) convection. The horizontal dashed line at r = 4 represents loss 
of stability through ‘odd’ modes which are not affected by the controller’s action. The 
dot-dash lines represent loss of stability through an imaginary cr (Hopf bifurcation) 
into time-periodic bicellular convection ( K p  > 3.85). For Kp < 3.85, when the principle 
of exchange of stability is valid, the differential controller has no effect on stability. For 
K p  > 3.85, when loss of stability occurs through a Hopf bifurcation, the differential 
controller (KD) shifts upward the bifurcation point. The numbers in parentheses next 
to the KD-values describe the structure of the convective motion once the critical 
Rayleigh number is exceeded. 
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FIGURE 6 .  The critical normalized Rayleigh number (r)  at the onset of convection in a square cavity 
is depicted as a function of the controller’s gain K, for K ,  = 0 and 0.02 and for the two-dimensional 
modes n = 1 (solid curve) and n = 2 (dashed curve). The dashed horizontal line corresponds to 
bifurcation into odd modes, which are not affected by the controller’s action. The lines and symbols 
correspond, respectively, to analytical and numerical predictions. The solid, dashed, and dot-dashed 
curves correspond, respectively, to bifurcation into unicellular time-independent, bicellular time- 
independent, and bicellular time-periodic convection. 

The numerical experiments were conducted by fixing the controller’s gains, 
introducing small temperature deviations from the conductive state, gradually 
increasing the magnitude of the Rayleigh number, and observing whether disturbances 
grow or decay as functions of time. The symbols represent the smallest values of the 
Rayleigh number for which non-decaying disturbances were observed. The critical 
numerical Rayleigh numbers were established within a precision of & 2.5 % and they 
are slightly above (< 6 %) the analytical predictions. The solid squares, circles, and 
diamond correspond, respectively, to steady unicellular, steady bicellular, and 
oscillatory bicellular motion. The qualitative structure of the convective motion 
observed in the numerical experiments is in accord with the flow and temperature fields 
predicted by the eigenfunctions of the linear stability problem. These fields are further 
described in $6.3. The numerical results also suggest that the controlled no-motion 
state has a non-zero basin of attraction and that it can survive finite-amplitude 
disturbances. 

Figure 7 depicts the critical r for the cube as a function of K p  for various &,-values. 
The dashed and solid curves represent, respectively, bifurcation into time-independent 
(exchange of stability) unicellular two- (n,rn) = (1,O) (0 < K p  < 1.2), and three- 
dimensional (n,m) = (1,l) (1.2 < Kp < 3.85) convection. The bifurcation curve (not 
shown) into two-dimensional bicellular convection (n, rn) = (2,O) is located above the 
(1,O) and (1,l) curves and will never be observed in practice. The lines labelled 
‘ oscillatory’ represent bifurcation into time-periodic convection ( K p  > 3.85). This 
bifurcation can be shifted to higher r-values by engaging a differential controller 
(KD > 0). The differential controller affects stability only when the bifurcation occurs 
through an imaginary eigenvalue. Note that it does not pay to increase Kp above 3.85 
unless one engages the differential controller (KD > 0). The ‘odd modes’ are destabilized 



498 Jie Tang and H .  H. Bau 

KP 
FIGURE 7. The critical normalized Rayleigh number ( r )  at the onset of convection in a cube is depicted 
as a function of the controller gain K, for K, = 0, 0.01, and 0.02. The dashed, solid, and dashed-dot 
lines correspond, respectively, to bifurcation into time-independent (1,0), (1,l) and odd modes. Lines 
with the label Oscillatory correspond to a Hopf bifurcation into time-periodic convection. 
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FIGURE 8. The temperature O(0,O) = T(0,O) - 0.5 is depicted as a function of the Rayleigh number for 
K,  = 2. Similar behaviour is obtained in the directions of both increasing and decreasing Rayleigh 
number. 

at r = 4 (horizontal dash-dot line) which is as far as our control strategy can be used 
to maintain a no-motion state. 

In the classical problem, loss of stability occurs through a supercritical bifurcation 
and the no-motion state has a global basin of attraction. Thus far, we have 
demonstrated that the proposed control strategy can significantly shift the onset of 
convection. Next, we show that, at least in the two-dimensional case, the bifurcation 
remains supercritical in the presence of the controller. 

To this end, we conducted numerical experiments in which, for a fixed set of 
controller’s gains, we gradually increased the magnitude of the Rayleigh number. 
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FIGURE 9. The midheight temperature at the left-hand-side lateral boundary, T(0,O) (solid line); the 
bottom temperature at the left-hand-side corner, T(0, -0.5) (dashed line); and the stream function 
at the box's centre, ul(0.5,O) (dashed-dot line), are depicted as functions of time t for R = 100 
( r  - 2.5). For 0 < t c 2.5, the controller is off. For 2.5 < t c 6 ,  the controller with gain 
(Kp,  K,) = (3.5,O) is active. The controller allows the bottom temperature to vary by no more than 
f 0.4. For 6 < t < 9, the controller counteracts the action of random disturbances. 

Figure 8 illustrates the results of one such calculation for K p  = 2 and Ks = 0. O(0, 0), 
the difference between the steady-state temperature and its conductive value, is 
depicted as a function of the Rayleigh number. In the absence of motion, the 
temperature field is conductive and O ( 0 , O )  = 0. Once the critical Rayleigh number of 
the controlled system (R - 77) has been exceeded, O ( 0 , O )  increases gradually. Other 
variables such as the Nusselt number (not shown here) exhibited similar behaviour. 
The continuous increase of e(0,O) as a function of R, the lack of a discontinuous jump, 
and the lack of hysteresis suggest that the bifurcation is supercritical. 

Furthermore, numerical experiments, some of which we describe in the next 
subsection, indicate that the controller can successfully suppress established motion. 
Although not a rigorous proof, this behaviour suggests, nevertheless, that the 
controlled no-motion state has a global basin of attraction. Large deviations from the 
no-motion state may, however, require large momentary changes in the bottom 
temperature which may cause a practical controller to saturate. Hence a practical 
controller may have a finite basin of attraction. 

6.2. The dynamics of the controlled system 
In this section, we describe the dynamics of the controlled system. For R = 100 
( r  - 2.5), figure 9 depicts, as functions of time t, the midheight temperature at the left- 
hand-side lateral boundary, T(0,O) (solid line); the bottom temperature at the left- 
hand-side corner, T(0, -0.5) (dashed line); and the stream function at the box's centre, 
Y(O.5,O) (dashed-dot line). Since the convective motion in a square box consists of a 
single convective cell, the magnitude of the stream function at the cell's centre is a 
measure of the intensity of the convective motion inside the cavity. The initial 
conditions ( t  = 0) correspond to a no-motion state. Initially, the controller is off and 
the bottom temperature is uniform, T(x, - 0.5) = 1. As a result of a thermal disturbance 
intentionally introduced at point (0, 0), clockwise motion begins. In order to contrast 
the controlled and uncontrolled states, we allow the motion to achieve steady state (this 
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FIGURE 10. The temperature field (isotherms) associated with time-independent flow in the 
absence of a controller for R = 100. 

will never happen when the controller is active). The temperature distribution 
(isotherms) in the cavity associated with the steady motion state (0.5 < t < 2.5) and 
consistent with unicellular convection is depicted in figure 10. Close spacing of the 
isotherms at the upper-left-hand-side and lower-right-hand-side corners correspond, 
respectively, to ascending and descending flows. 

At time t = 2.5 in figure 9 the proportional controller with gain (Kp ,  KD) = (3.5,O) 
is engaged (the controlled system’s critical Rayleigh number for the onset of convection 
is 113.4). In order to simulate a realistic controller, we limited the controller’s action 
so that it can alter the bottom temperature by at most & 0.4. We emphasize again that 
in the above, for illustration purposes, we described a much more difficult task than the 
controller would usually confront. Most likely, in applications the controller will be 
switched on before the Rayleigh number has been increased and the need to suppress 
established motion would never arise. Since in this case we are dealing with established 
motion, for a short amount of time, the controller alters significantly the bottom 
temperature (but by less than f 0.4) and saturates : witness the decline of the corner 
temperature T(0, -0.5, t )  for 2.5 c t < 3. The controller successfully suppresses the 
motion. The fact that the controller succeeded in suppressing established motion 
suggests that it has a large (possibly global) domain of attraction. Once the motion has 
been suppressed, the controller restores the bottom temperature to its nominal uniform 
value of 1, the midplane temperature to its conductive value of 0.5, and the magnitude 
of the stream function at the box’s centre to its no-motion value of zero. A glance at 
the temperature field (not shown here) reveals perfectly horizontal isotherms. For 
2.5 < t < 6, a stable no-motion state is sustained with boundary conditions identical to 
the ones of the uncontrolled system and for a Rayleigh number 2.5 times the critical 
one for the onset of convection in the uncontrolled system. In other words, in an ideal 
system, which is not subject to finite-amplitude disturbances, the controller does not 
alter the no-motion state; it only alters the system’s dynamics. 

Typically, in practice, the controller will need to cope with small random 
disturbances. In order to investigate the system’s response to such disturbances, for 
t > 6 we introduced random fluctuations in the temperature field, varying the 
temperature of each grid point at each time step by random noise with maximum 
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FIGURE 11. The temperature field (isotherms) for R = 100 in the presence of a controller with 
(Kp, K,) = (3 .5 ,O)  and random fluctuations in the temperature field. 

1 .o 
.=: 
0” 

0.5 

0 3 6 9 12 15 
t 

FIGURE 12. The midheight temperature at the right-hand-side lateral boundary, T(O,O),  is depicted as 
a function of time t .  R = 150. For 0 < t < 2.5, the controller is off. For 2.5 < t < 9, after initial 
transients die out, periodic motion is observed as a result of engaging the controller (Kp, K,) = (4.0,O). 
The controller allows the bottom temperature to vary by no more than f 0.7. At z = 9, the controller 
(Kp,  K,) = (4.2,0.02) succeeded in suppressing the motion and bringing T(0,O) to its no-motion 
conductive value of 0.5. 

amplitude of k I %. Despite these disturbances, the bottom temperature remained 
close to its nominal value of one, the isotherms remained almost horizontal (see figure 
1 1)’ and there was essentially no motion in the box. The lack of motion is signalled by 
the stream function’s value being close to zero. Figure 11 shows a snapshot of the 
temperature field (isotherms) at t = 9 in the presence of random disturbances. Figure 
11 should be contrasted with figure 10 which corresponds to almost the same boundary 
conditions. 

Next, in figure 12, we describe the system’s dynamics under conditions in which the 
proportional controller alone cannot suppress the convective motion. The temperature 
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FIGURE 13. The time-independent, supercritical flow field is depicted for R = 122 ( r  = 3.09), 
K,  = 3.5 and KD = 0. The stream-function values are multiplied by a factor of 10. 

T(0,O) is depicted as a function of time t for R = 150 ( r  N 3.75). For clarity, we do not 
depict the bottom temperature and stream function values as we have done in figure 
9. In order to contrast the uncontrolled system with the controlled one, we allow steady 
convection to develop while the controller is switched off (0 < t < 2.5). We emphasize 
again that this is rather an unusual situation. In a typical application, the Rayleigh 
number will be gradually increased from zero to a prescribed value with the controller 
switched on so that established motion will never occur. 

At time t = 2.4 we engage a proportional controller with gain K,  = 4 and KD =* 0. 
Since the controller faces the daunting task of suppressing fully developed convective 
motion, the actuators will have to effectuate fairly large fluctuations in temperature at 
certain locations along the bottom. We have restricted these fluctuations to f70%. 
Consequently, the controller occasionally saturated. The proportional controller alone 
is not capable of suppressing the motion. After initial transients die out, the controlled 
system exhibited time-periodic behaviour. This is in accord with predictions of linear 
theory (figure 6). In order to suppress the motion, we engaged at time t = 9 both 
proportional (K, = 4.2) and differential (KD, = 0.02) control. In agreement with linear 
theory, the combined action of the differential and proportional control is capable of 
suppressing the motion. Witness that the temperature T(0, 0), the bottom temperature 
T(x, -0.5), and the maximum absolute value of the stream function (not shown in 
figure 12) return, respectively, to their no-motion conductive values of 0.5,l and 0. For 
time t > 12 the isotherms are horizontal and there is no motion in the cavity. In other 
words, the controller maintains a stable no-motion state for Rayleigh numbers 3.75 
times the critical one for the onset of convection in the uncontrolled system. 

6.3. The behaviour of the supercritical system 
The major objective of the control strategy is to shift to higher Rayleigh numbers the 
bifurcation point from the no-motion to the motion state. The controller affects the 
dynamics of the system by altering the stability characteristics of the no-motion state 
while preserving the boundary conditions of the uncontrolled system. In other words, 
as long as the critical Rayleigh number of the controlled system is not exceeded, the no- 
motion states of the controlled and uncontrolled systems are identical. Once the critical 
Rayleigh number of the controlled system has been exceeded, however, the system will 
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exhibit convective motion significantly different from that of the uncontrolled system 
with significantly different boundary data. 

For example, in figure 13, we depict the steady-state flow field (streamlines) for 
r - 3.09. For the same Rayleigh number, the motion in the uncontrolled system 
consisted of a single convective cell while in the controlled system (figure 13), we 
observed four cells. Of course now the bottom temperatures of the controlled and 
uncontrolled systems are significantly different. The four-cell structure is consistent 
with the linear stability theory’s predictions. We did not depict the temperature field 
since, owing to the weakness of the convection, its structure does not significantly 
deviate from that of the conduction isotherms. 

Figures 14(a), 14(b) and 14(c) depict, respectively, the temperature T(0, 0, t) ,  the 
flow field (streamlines), and the temperature field, as functions of time for K p  = 4, 
KD = 0 and R = 150 (r = 3.80). In line with the linear analysis predictions, we observe 
time-periodic behaviour. The various frames in figures 14(b) and 14(c) represent 
snapshots at various times during one period. The frames in figures 14(b) and 14(c) 
should be correlated with the bullets in figure 14(a). In contrast, for the same Rayleigh 
number, the uncontrolled system exhibits time-independent unicellular motion. 

We included figures 13 and 14 to illustrate that once the critical Rayleigh number of 
the controlled system has been exceeded, the resulting motion is significantly different 
from that in the uncontrolled system. Figures 13 and 14 demonstrate, however, yet 
another potential application of a controller. Instead of preserving equilibrium states 
of the uncontrolled system, the controller can be used to adjust the boundary 
conditions in such a way as to achieve desired flow behaviour unavailable in the 
uncontrolled system. For example, in certain applications, the flow structure depicted 
in figure 13 may be superior to the unicellular convection of the uncontrolled system 
since it is less effective in transporting contaminants from the bottom boundary to the 
top one. 

7. Conclusions 
We have demonstrated that feedback control can be effectively used to stabilize the 

no-motion state of a saturated porous layer heated from below. More specifically, with 
the use of a simple controller, one can increase the critical Rayleigh number for the 
onset of convection by as much as a factor of 4. Additional gains could possibly be 
made through the use of more elaborate controllers than the ones we have considered 
here. 

In essence, without affecting the classical equilibrium state, the controller modifies 
the system’s dynamics by enhancing the disturbance dissipating mechanisms in the 
fluid. In a system subject to finite-amplitude noise, the controller will maintain the no- 
motion state through small modulations in the boundary temperature. In such a case, 
the isotherms will be almost horizontal. Once the Rayleigh number exceeds the critical 
one for the controlled motion, the resulting supercritical flow will significantly differ 
from that in the uncontrolled system. This suggests yet another application of the 
controller, which was not explored in this paper. Rather than stabilizing an equilibrium 
state of a given system, the controller could be used to create new flow structures, 
optimized in such a way as to suit particular process requirements. 

Control strategies similar to the one described in this paper can also be used to delay 
the onset of convection in the Rayleigh-BCnard problem (Tang & Bau 1993). 
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FIGURE 14. (a) The temperature history T(0,0.5, c), (b) the flow field, and (c) the temperature field are 
depicted as functions of time for R = 150 ( r  = 3.8), K, = 0, and K p  = 4. The frames in (b )  and (c) are 
snapshots at various times during the period and should be correlated with the bullets in figure (a). 
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